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Abstract

Randall var iables X and Y are mutually ccmipletely dependent if

there exists a one— to—one function g for wh ich P [ Y = g CX )]  = 1. P’n

exanpie is presented of a pair of randan var iables which are

mutually ccinpletely dependent , but “almost” independent. This

exanpie motivates considering a new concept of dependence , called

monotone dependence, in wh ich g above is now required to be

monotone. Finally, this monotone dependence concept leeds to

defining and stuiying the prpperties of a new n~.iner ical measure of

statistical association between r andall var iables X and Y defined by

sup {corr [f (X) , g (Y) ] } ,  where the sup is taken over all pairs of

suit~~le monotone functions f and g. 
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1. Introduction and si~snmary. A r axxicxn var iable (rv ) Y is defined

(see Lancaster (1963)) to be cai~pletely dependent Qfl a rv X if there

exists a function g suc1~’ that

(1.1) P (Y = g ( X ) ]  = 1.
Intuitively, Y is completely dependent on X if Y is perfectly

predictable fran X .  The rv ’s X and ‘1 are defined ( see Lancaster ( 1963))

to be mutually completely dependent (t( D) if Y is completely dependent

on X and X is completely dependent on Y. Equ ivalently, X and Y are t 4 D

if (1.1) bolds for some one—th—one function g. The concept of mutual

complete dependence is , in a real sense , directly o~~osite to that of

stochastic independence , in that mutual complete dependence entails

complete predictability of either rv from the othler , while stochastic

independence entails complete unpr ed ictabil ity .

An important measure of dependence between t~~ nondegené’~ate rv ’ s X

and Y is that of sup correlation , introduced by Gebelein (1941) , stlxi ied

anong others by Renyi (1959) and Sartnanov (1958a ,b)i , and defined by

p ’(X ,Y) sup p[f(X),g(Y)],

where the supr~ nun is taken over all Borel—measurable functions f , q,

such that 0 < Vat f ( X )  < ~~ and 0 < Vat g ( Y)  < cx , and where ~
represents the ordinary (Pear son product moment) correlation. The

properties of sup ,correlation as a measure of dependence are discussed

in i~ nyi (1959). It is clear that t~~ rv 1s which are ~~D have sup

correlation 1, but that the converse is not true. (See Lancaster (1963)

for a discussion of necessary and sufficient conditions for the complete

mutual dependence of r andom var iables.)
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Clearly, if a sequence {(X~ Yn)} of pairs of independent tv ’s

converges in law to a pair (X , Y) of tv ’s, then X and Y must be

independent. It might be conjectured that if a sequence { (Xe, Y~) } of

pairs of MCD tv ’s converges in law to a pair (X, Y) of tv’s, then X and

Y must be MCD. As is shown below, this conjecture is false . In fact,

Section 2 presents a sequence of pairs of MCD rv ’s, all hav ing the same

marginals, which converges to a pair of independent rv ’s. This defect

of mutual compl ete dependence motivates a new concept of total

statistical dependence, called monotone dependence , which is defined and

stud ied in Section 3.

When t~~ tv ’s are neither totally statistical dependent nor totally

independent, it is often useful to have a n~.mer ical measure , such as the

correlation coeffic ient, to express the extent to which the tv ’s are

related. A new nunerical measure, called monotone correlation, is

presented and exanined in Section 4. This new measure is related in

Section 5 to the concept of uniform representations of bivariate

d istr ibut ions.

2. MCD tv ’s which are almost independent. This sect ion presents

sequences (U~ } and (V~} of tv ’s all hav ing a uniform distr ibut ion on

(0 ,1) such that for each n , and Vn are MCD, but that the pairs (U~~
V~) converge in law to a pair (U ,V) of independent tv ’s each having a

• uniform distr ibut ion on (0 ,1).

Partition the unit square into n2 congr uent squares and denote by

(i , j)  the square whose u~~er r ight corner is the point with coordinates

x — i/n , y - j /n. Similarly, partition each of these n2 squares into n2
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subsquares and let (i,j,p,q) denote subsquare (p,q) of square (i,j).

Now let the bivar iate rv (U~ Vn) distribute mass n 2 uniformly on

either one of the diagonals of each of the n2 subsquares of the form

(i , j , j ,i) for 1 � i � n , 1 � j � n. Figure 1 illustrates the case

n = 3. (INSERr FIGJRE 1 HERE) .

0 1

Figure 1. Support of the Distribution of (U3,V3).

li4~X)R~4 1. Each of the tv’s ~~~ Vn has a uniform distribution on

(0,1). For each n the tv ’s and V~ are MCD. The sequence ((U~ V~)}

converges in law to a pair (U,V) of independent uniform rv’s.

P1~JOF. For each n, it is cleat that and V~, are MCD. Also,

P since U~ and Vn each assigns mass n~~ uniformly to each interval

(( i—l)/n , i/n) , it is clear that and V~ have un iform distributions on

• (0 ,1). Finally, since 
~ n ’ Vn ) assigns total mass n 2 to each of the n2

large squares, 111% P [U~ ~ u, Vn � vi — uv for each point (u ,v) in the

unit square. 0

—- — - - - .
~~-~~~~~~ . -

— ••j
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Now, let F arid G be any pair of continuous cunulative distr ibut ion

functions (cdf’s). It is easy to generate seauences (X
n) ~~~ ~~n

1 of

tv ’s with respective marg inals F and G such that X~ and are MCD for

each n , yet {(X n t 
~
‘
n~~ 

has joint limiting distribution F•G and hence are

as~mptotical1y independent. ‘Lb do this, define Xn = F ’(tJ ) and

‘
~
1n = G ’(V~) where arid Vn are as above and where for any continuous

cdf K, we define

(2.1) K 1(t) inf {x: K (x) � t}.

This method of generating bivariate cdf’s having specified continuous

margina].s from bivariate cdf’ s having uniform marginals is the method of

translation. (See for example Mardia (1970) , Kimeldor f arid Sampson

(1975a).)

3. Monotone dependence. - The preced ing example of pairs of MCD

tv’s which are almost independent suggests that mutual complete

dependence is too broad a concept to be an antithesis of independence .

We therefore propose the following concepts of total dependence.

LEFINITION. Let X and Y be continuous tv ’s. Then Y is monotone

dependent on X if there exists a monotone - function g for wh~ch

P[Y = g ( X) ]  = 1.
It is easy either to verify directly or to conclude as a corollary

to Theor~ n 2 below that Y is monotone dependent on X if and only if X is

monotone dependent on Y. We can therefore make the following

definitions.

LEFINITI(!~ . Two continuous tv ’s X arid Y are monotone dependent if

there exists a monotone function g for which P(Y g(X)h 1. If g is
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increasing, X arid Y are said to be increasing dependent; if g is

decreasing, X and Y are said to be decreasing dependent.

Before proceeding to show that monotone dependent rv ’ s cannot be

“almost” independent in the sense described in Section 2, we review some

known results on Frechet bounds. (See Frechet (1951).) Let F and G be

cdf’s. Then -

+H (x ,y) = mm [F(x) , G (y)J

and

= max [F(x) + G (y) — 1, 0]

are called the upper and lower Frechet bounds, respectively, of the

class of bivar iate cdf’ s --with marg inals F arid G. Both H~ and H are

singular bivariate distributions; H+ assigns probability 1 to the set

{(x,y):. F(x) = G(y)} and H to the set {(x ,y): F(x) +- G (y) = 1). They

are bounds in the sense that if H i-s any bivariate cdf with marg inals F

and G, then

(3.1) H(x ,y) �H(x ,y) �H~ (x,y).

(A proof of (3.1) appears in Johnson and Kotz (1972, pp. 22—23).)

ThEORE7I 2. Let X arid Y be continuous tv ’s with respective cdf’s F

and G. A necessary and sufficient condition that X and Y be increasir~

(decreasing) monotone dependent is that the joint cdf of (X,Y) is

H~ (H ).

P~~OF. The sufficiency is ininediate. ‘Lb prove the necessity,

assune that X and Y are increasing monotone dependent, so that (1.1)

holds for some monotone increasing g. If s � t, then

• (3.2) F(t) — F(s) � P(g(s) < g(X) � g(t)] + P[g(X) = g(s)] 
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= P ig( s)  < Y 
~ g(t)1 + P lY = q(s) i

= P ig(s)  < Y � g (t ) 1

�G ( g ( t ) ) — G ( g ( s ) ) .

Let t ) co and s + — co in (3 .2) to derive 1 � G(g ( co) ) — G ( g ( — c o ) ) and

hence G(g ( co) ) = 1 arid G(g(— co ) ) = 0. Let s + —w and set t=x in (3.2)

to derive

(3.3) 
- 

F(x) � G(g(x)).

Let s=x and t + co in (3.3) to der ive the inequality

(3.4) 1 — F(x) � 1 — G(g(x)),

which, together with (3.3), implies that F(x) = G(g(x)). Now, if H is

the joint cdf of (X,Y), then

H(x,y) = PEX .� x , Y �

= PEF (X) � F(x), G(Y) � G (y) )

= P[G(g(X)) � F(x), G(Y) � G (y) ]

P(G(Y) ~ F(x), G(Y) � G(y)]

= P(G(Y) � m m  {F(x), G(y)}]

= mm {F(x), G(y)}.

A similar argunent is used if g is decreasing . 1]

Theor~n 2 is a partial justification for the interpretation of

monotone dependence as an opposite to stochastic independence. The

theorem implies that among all pairs of rv ’s with pr escribed marginal s,

those which are as dependent as possible in the sense of (3.1) are

exactly those which are monotone dependent. Section 2 presented a

sequence of pairs of MCD continuous tv ’s which converges in law to a

pair of independent tv ’s. The following theorem shows that this cannot



Page 7

happen for pairs of monotone dependent continuous tv ’s by showing that

the pr oper ty of monotone dependence is preserved under weak convergence .

ThEOR~7I 3. { (Xc, Y~) } is a sequence of pairs of monotone

dependent continuous tv ’s which converge in law to a ~~~~ (X , Y) of

continuous tv ’s, then X and Y are monotone dependent.

P1~JOF . E~ note by Hn and H the respective bivar iate cdf’ s of

(X ,Y )  and (X ,Y ) ,  and denote by ~~ ~~~ F , and G the cdf ’ s of X~ , Y~ ,

X , and Y, respectively. Since ( ( X ~ ,Y~) }  converges in law to (X ,Y ) ,  it

follows that {F n (X ) } converges to F(x) , {Gn (y) } converges to G (y) and

there exists a subsequence { (X~ ,Y ) } such that either X1~ and are
k nk k k

increasing monotone dependent for all k or decreasing monotone dependent

for all k. It follows in the fo rmer case by Theoren 2 that Hn (x,y) =

k
min (F (x) , Gn (y)} ,  which converges to H ( x ,y) = mm {F(x), G(y)}.

k k
Therefore , X and Y are increasing monotone dependent. A similar

argun~~t holds if X~ arid are decreasing monotone dependent for each
k k

k. fl

4. Monotone correlation. Two continuous tv ’s X and Y are monotone

dependent if there exists a perfect monotone relation between th~ii. If

the tv ’s are not perfectly monotonically related , it may be useful to

measure nuner ically the degree of monotone dependence between then . (~ e

such measure, cal led monotone correlation, can be defined as follows:

DEFINITION. The monotone correlation p~ between two nondegener ate

rv ’s X and Y is

(4.1) p*(X ,y) = sup p [ f ( X ) , g ( Y ) 1,

where the supremun is taken over all monotone functions f , g, for wh ich
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0 < var f(X) < no arid 0 < var g(Y) < no.

It is clear that if two tv ’s are monotone dependent , then their

monotone correlation is 1. To see that the conver se impl ication fails ,

let (X ,Y) have a uniform distr ibution over the region [(0 ,1) )( (0 ,1)1 U

[(1 ,2) X (1 , 2) 1 so that X arid Y are not monotone dependent , although

p*(X ,y) �.p[I 0 1~ (X) , 1 0 1 (Y) ]  = 1, where I denotes the ind icator
( , 1  ( , )

function. It is o~ iious that

p (X ,Y) �p*(X,Y) ~~p ’( X ,Y).

It can be easily seen that p* is not identical top ’ . For example ,

let (X ,Y) have a uniform distr ibut ion on the region [(0 ,1) X (0,1)] U

[(0 ,1) X (2 , 3) 1 U [(1 , 2) X (1 , 2) 1 U [( 2 , 3) X (0 , 1)1 U [(2 , 3) X (2 , 3) 1

and let f = I 0 1  + 1 2 3 so that p*(X,Y) < 1 , but p ’(X ,Y) ~( ,  ) ( ,
,o [f (X ) ,f ( Y ) ]  = 1.

While correlation as a measure of dependence is invar iant under

changes of scale and location in X and Y , monotone correlation is

invar iant under all order—preserving or order—reversing transformations

of X arid Y. Thus , monotone correlation would be a suitable measure of

association for ordinal data . For a further discussion of measures of

association for ordinal data , the reader is referred to Kruskal (1958)

and Gibbons (1971, Chap. 12).

Any candidate for a measure of association should have the property

of being zero when the rv ’s are independent. Clearly, correlation, sup

correlation, and monotone correlation all have this proper ty . It would

also be desirable for a measure of association to satisfy the converse

impl ication , namely that it be zero only when X and Y are independent.
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Cor relation clea r ly does not sat i s fy  thi s conver se property, although

sup correlation does . (See Renyi (1959)). The following theorem shows

that monotone correlation satisfies this converse impl ication. The

proof of the theorem is essentially similar to that given by Renyi for

sup correlation.

ThEORF~4 4. If X arid Y are nondegenerate tv ’s with monotone

correlation zero, then X and Y are independent.

P~)OF. Suppose p*(X,Y) = 0. For any real t, define = ~

We claim that P[f5(X),ft(Y)1 = 0. For if not , then either

> 0 or p[f5(X),—qt(Y)) > 0, which contradicts the

hypothesis. Now, P[f5(X),ft(Y)] = 0 implies that P[X � s, Y � t] =

P[X ~ s] ~P[Y � ti, which implies independence. U

5. Unifo rm representation and monotone correlation. Let H be a

continuous bivar iate cdf with marginal cd f’ s F and G. The uniform

representation UH of H as defined by K imeldorf arid Sampson (l975b) is

(5.1) UH (u ,v) = H(F ~~ (u ) , G~~ (v ) ) ,  0 ~ u ~ 1, 0 � v ~ 1,

where F 1 and G 1 are as defined by (2.1). (bserve that UH is a cdf on

the unit square with both marginal distr ibutions being un iform on (0 , 1).

Thus, the class of all continuous bivar iate cdf’ s can be decomposed into

equivalence classes determined by the equ ivalence relation

(5.2) H1 
- H2 iff U = UH1 H2

If (X,Y) and (V,W) have continuous cdfs H and K, respectively, we wri te

(X,Y) - (V,W) whenever H - K.
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C
LF2IMA 1. Let (X,Y) and (V,W) have continuous bivariate cdf’s H and

K, respectively. Then H - K (i.e. (X ,Y) - (V,W)) if arid ~~~ if there

exist increasing functions A and B such that the joint cdf of A (X) and

B(Y) is K.

PF~JOF. Denote the marginals of H by Fx and F~ and the marginals of

K by Fv and Fw. Suppose there exist increasing functions A and B such

that (A(X),B(Y)) has continuous cdf K. Since A(X) is a continuous rv ,

the marginal cdf of A(X) is F(s) = P[A(X) � si = P[X .� A~~ ( s) 1 =

(Fx0A
1) (5) , where A 1 is as defined by (2.1). Similarly, the marg inal

cdf of B(Y) is (F~OB
1) (t). Therefore, the uniform representation of K

is

IJK (s,t) = KE(A~~
)’OFx~~

(s), (B)~~0F~~~(t)1

= P[A (X) � (A ’)
~~

0Fx~~
(s) , B (Y) �~ 

(B~~)~~OF~(t)]

= P[X 
~ 
Fx
’(s) , ‘~‘ � Fy ’(t)l

— —l —l
— H(Fx (s), F.1, (t)),

which is the uniform representation of H.

Conversely, suppose H - K. Let A = Fv 
1OFx and B = FW

’OFY. Then

A (X) has cdf Fv and B(Y) has cdf Fw. Moreover, by (5 .1) the uniform

Lepresentation of the joint cdf of (A(X), B(Y)) is

U(s,t) = P[A(X) � Fv
’(s), B(Y) � Fw

’(t)•]

= P[Fx (X) � ~ F~ (Y) � ti

= PEX 
~ 

Fx
’(s) , Y �

which is the uniform representation of H, hence of K. Finally, since

the joint cdf of (A(X), B(Y)) has the same marginals as K and also the

sane uniform representation as K , the joint cdf is K. [1
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An elementary relationship between the concepts of uniform

representation and monotone correlaion is that

(X,Y) - (V ,W) impl ies p*(X,Y) =p*(V,W).

This relationship follows directly from Lemma 1. A further relationship

between the concepts of unifo rm representation and monotone correlation

is expressed by the following theorem, whose proof requires an

additional leiina.

‘lHEORE7I 5. Let (X ,Y) have continuous bivar iate cdf H. Then

(5.3) p*(X ,Y) = sup (j,o(V,W)t: (V,W) - (X,Y)1.

LEMMA 2. Given noridegenerate tv ’s X and Y, let f and g be

increasing functions for which 0 < var f(X) < no and 0 < var g(Y) < no.

Then there exist sequences (f ~} and (g~} of strict1~ increasing

functions for wh ich var fn (X) < no, var g~(Y) < no, and limn P[fn(X),

g~(Y)] = ,o[f(X), g(Y)].

P1~)OF . We use the fact that any increasing function can be

uniformly approx imated by a str ictly increasing funct ion. Let f~} ~~

be sequences of strictly increasing functions converging uniformly

to I and g, respectively. Since f ( X )  and g(Y) have finite nonzero

var iances, we have E [fn(X)] + E[f(X)], E[g~(Y)] + E[q(Y)1, E[f~
2(X)1 +

E [f 2(X)), E[g~
2(Y)] + E[g2’Y)), arid E[f~(X)g~(Y)1 + E[f(X)g(Yfl, so that

~o(f~(X), g~ (Y)J +,o[f(X), g(Y)]. B

PROOF OF ThFX)REM. Let any nunber € > 0 be given. By the

definition of p~ and Lemma 2, there exist str ictly increasing functions

f and g such that Ip*(X ,Y) — l,o [ f (X) , g(Y)fl I < e. Thus, the pair
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(V=f(X) , W=g(Y)) has a continuous joint cdf and Lemma 1 can be applied

to conclude that (V,W) - (X,Y). Hence the left side of (5.3) cannot

exceed the right side. To prove the reverse inequality, suppose (V,W) -

(X,Y). Then by Lemma 1, there exist increasing functions A and B for

which p[A (X ) , B(Y) ] = p ( V ,W ) .  Let A ’ = [sgn p(V,W)1 A so that Ip(V,W)I

= ,o[A ’ (X) , B(Y) J �p *(X,Y). (]

If X arid Y are univariate tv ’s with respective cdf’s F arid G , then

the grade correlation (see, for example Gibbons (1971)), which is the

population analog of Spearman ’s rank correlation coefficient, is defined

as Pg = ,o[F(X), G(Y)J. Thus, the grade correlation is the (ordinary)

correlation coefficient of the uniform representation, and

i0g (X i ’l’) �P*O(,~ ) �P ’ (X ,Y) .

Note that the probability integral transform can be used to standardize

an ordinal scale by divising ranges that are equal in terms of

probability. In computing relationships between two such ordinal

variables, therefore, the rank correlation (or grade correlation) is a

useful device. However, it might be argued that the scaling should be

done in an absolute fashion, rather than relative to some sort of

population distribution. What the monotone correlation measures is the

maximal correlation that might be achieved under arty such monotone

scaling.

P.. continuous bivar iate distr ibut ion can be decomposed into two

components: its structure, by which is meant the equivalence class

determined by the equivalence relation - (defined by (5.2)) in which the

distribution belongs, and its marginal distr ibutions. Conver sely, given
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any equivalence class and any pair of continuous univar iate

distr ibut ions, there exists a unique bivariate distr ibution with these

two components. In this context, Whitt (1976) posed the following

problem: If the marginals are fixed, for what structure is the

correlation maximized? Whitt showed that the maxintun correlation is

achieved when the bivar iate d istr ibut ion is the upper Frechet bound, and

the correlation is minimized when the distr ibut ion is the lower Frechet

bound.

(~e can just as well pose the reverse problem: If the structure is

fixed , for what pair of marginals is the correlation max imized? In

general , there will not be any pair of marginals for which the max imun

is achieved ; on the other hand , Theorem 5 states that the supremun of

the correlations is exactly the monotone correlation.
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